Exponential of Derivative is Shift

Ethan Lipson

October 242024

Recall the Taylor series for e^x around 0:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Let's plug in $a \frac{\mathrm{d}}{\mathrm{d}t}$, and apply it to an analytic function $f : \mathbb{R} \to \mathbb{R}$.

$$e^{a\frac{\mathrm{d}}{\mathrm{d}t}}f = \sum_{n=0}^{\infty} \frac{1}{n!} \left(a^n \frac{\mathrm{d}^n}{\mathrm{d}t^n}\right) f = \sum_{n=0}^{\infty} \frac{a^n}{n!} f^{(n)}$$

Now more generally, the formula for a Taylor series of f around t is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(t)}{n!} (x-t)^n$$

so if we let x = t + a, then this expression becomes

$$f(t+a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(t)}{n!} ((t+a) - t)^n = \sum_{n=0}^{\infty} \frac{a^n}{n!} f^{(n)}(t)$$

which is exactly $e^{a\frac{d}{dt}}f$ evaluated at t. Hence, $e^{a\frac{d}{dt}}f(t) = f(t+a)$.