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When the power series
∑∞

n=0
Xn

n! is well-defined (including when X is a real
number, complex number, or matrix), it is equal to exp(X). This truth is so
ubiquitous that it is often used as a definition of exp. Here, I provide some more
precise arguments on this subject.

1. exp(tX) = y(t)

As mentioned in a footnote, I wrote that exp(tX) = y(t) in the defini-
tion of exp, but this shouldn’t be part of the definition. Rather, it follows
from the definition exp(X) = y(1). To see why, define z(s) = y(ts). Then
exp(tX) = z(1) = y(t), so we just need to show the tangent vector dz

ds (0)
is tX

dz

ds
=

dz

d(ts)

d(ts)

ds
=

dy

dt
· t

which, evaluated at 0, gives tX.

2. exp(X) exp(Y ) = exp(X + Y )

This one isn’t always true, in fact it’s true only when X and Y com-
mute, i.e. XY = Y X. We can prove it by matching terms of the power
series. Computing the degree-n term of exp(X) exp(Y ) involves multiply-
ing all terms with degrees that sum to n (since exponents are additive),
so

exp(X) exp(Y ) =

∞∑
k=0

Xk

k!

∞∑
ℓ=0

Y ℓ

ℓ!
=

∞∑
n=0

n∑
k=0

XkY n−k

k!(n− k)!

Recalling the binomial theorem, we may conclude

∞∑
n=0

n∑
k=0

XkY n−k

k!(n− k)!
=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
XkY n−k

=

∞∑
n=0

(X + Y )n

n!
= exp(X + Y )

It immediately follows that exp(0) = 1 by considering exp(0) = exp(0+0).

1



3. exp(X) = limn→∞(1 + X
n )n

The binomial theorem tells us that the coefficient of Xk in (1 + X
n )n

is
(
n
k

)
/nk. The coefficient of Xk in exp(X) is 1

k! , so we just need to show
that

lim
n→∞

(
n
k

)
nk

=
1

k!
, or lim

n→∞

k!
(
n
k

)
nk

= 1

Observe that the above expression simplifies to

lim
n→∞

n!
(n−k)!

nk
= lim

n→∞

n(n− 1) · · · (n− k + 1)

nk
= lim

n→∞

k−1∏
ℓ=0

n− ℓ

n

Then, it’s a straight shot to the finish line

lim
n→∞

k−1∏
ℓ=0

n− ℓ

n
=

k−1∏
ℓ=0

lim
n→∞

n− ℓ

n
=

k−1∏
ℓ=0

1 = 1

4. ex = limn→∞(1 + x
n )

n

ex is only defined for x ∈ C, so we can leverage properties of complex
numbers not present in matrices, namely division.

From the previous proof, we know e = limn→∞(1 + 1
n )

n. Using exponent
rules, we have

ex = lim
n→∞

(
1 +

1

n

)nx

Let k = nx, so k → ∞ when n → ∞. Then

lim
n→∞

(
1 +

1

n

)nx

= lim
k→∞

(
1 +

x

k

)k

Combining this result with the previous one, we have that ex = exp(x)
for x ∈ C, as we expect.

2


