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1 Introduction to Measure

For suitable A ⊆ R, call µ(A) the measure of A, which roughly corresponds to
”size”. The details of how we define it aren’t important here, but its properties
are mostly intuitive. In particular, µ([a, b]) = b−a and for pairwise disjoint sets
An ⊆ R, we have µ(

⋃
n An) =

∑
n µ(An).

There are even sets with infinite measure, like (0,∞) or even R itself, to
which we assign µ(R) = ∞. If it helps to see the ”type signature”, µ’s is given
by µ : M → R≥0 ∪ {∞} where R≥0 is the nonnegative reals and M ⊆ P(R) is
the set of ”measurable” subsets of R.

As you have probably learned in your analysis course by now, we must take
care in exchanging limits with other operations. Does the measure of an infinite
intersection equal the limit of the measure of each set? What about union?
(Clearly not, let An = (n, n+ 1). But there’s still something we can say.)

2 Continuity from Below

Let An ⊆ R such that An ⊆ An+1 for all n ∈ N, so An is an increasing sequence
of sets. For example, let An = (0, 1 − 1

n ). Then µ(
⋃

n An) = limn µ(An).
Intuitively, each set An contains the previous set An−1, so their infinite union
contains all of them, and is the ”increasing limit” of the sets in a certain sense.
Note that this increasing condition is why our example in the introduction didn’t
work.

To prove this, let Bn = An \An−1 (with A0 = ∅). It can be helpful to think
of each Bn as the ”layer” of an onion, with the union

⋃
n An =

⋃
n Bn being

the whole onion. Take note that by defining Bn by set differences, each Bn is
disjoint, and we have turned the union

⋃
n An into the disjoint union

⋃
n Bn.

Then,

µ

(⋃
n

An

)
= µ

(⋃
n

Bn

)
=
∑
n

µ(Bn) = lim
n→∞

n∑
k=1

µ(Bk) = lim
n→∞

µ(An)

Crucially, the second equality is valid because the Bn are pairwise disjoint.
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3 Continuity from Above

One might understandably expect a similar condition on intersections. Namely,
for sets An ⊆ R with An ⊇ An+1 for all n ∈ N, we hope for something like
µ(
⋂

n An) = limn µ(An). And that’s almost true – but there’s a complicating
factor, sets of infinite measure. For instance, consider An = (n,∞). Then
µ(An) = ∞ for each An, but

⋂
n An = ∅, which has measure zero.

So we impose the additional condition that µ(An) < ∞ for some An and
thus all the An after it. Now, in fact, our theorem holds! But the proof for
this one is harder. You can make the simplifying assumption that µ(A1) < ∞,
since we’ll eventually come to the set of finite measure anyway. It’s also easier
to prove the case where µ(

⋂
n An) = ∅.

4 Why ”continuity”?

Why do we call it ”continuity”? The usual definition of continuity of a function
f : R → R is that limx→a f(x) = f(a) for all a ∈ R. However, there’s an alter-
native but equivalent condition called sequential continuity : for any sequence
(xn) such that xn → a, we have f(xn) → f(a), for all a ∈ R. In other words, f
maps convergent sequences to convergent sequences.

How is this related? Well, if An is an increasing sequence of sets, then⋃
n An is the ”limit” of An in a certain sense (this analogy breaks down when

An is not increasing); in other words, An ”converges” to
⋃

n An. So for µ
to be ”continuous”, we would want it to map the convergent sequence An to
a convergent sequence of reals, like with sequential continuity. And indeed,
µ(
⋃

n An) = limn µ(An). The same idea applies to continuity from above, of
course.
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